
SHERLOCK SECURITY REVIEW FOR

Prepared for: MoverPrepared by: SherlockLead Security Expert: WATCHPUGDates Audited: October 18 - October 25, 2022Prepared on: November 22, 2022

https://github.com/jack-the-pug


Introduction
Mover is a permissionless protocol exploring metaverse savings. It is a suite of prod-ucts in NFT, web3, and DeFi space to create a new open savings experience.
ScopeThe single goal of the contracts is to get user funds (native token or ERC-20 token),swap it to USDC (PoS USDC on Polygon) and bridge it to specified static address onL1 Eth, on which user debit card settlement would be initiated.

ExchangeProxy.sol
RLPReader.sol
SafeAllowanceReset.sol
ByteUtil.sol
SafeAllowanceResetUpgradeable.sol
HardenedTopupProxy.sol
ContractWhitelist.sol

FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities thatmay not be directly exploitable ormay require certain conditions in order to be exploited. All major issues shouldbe addressed.• High issues are directly exploitable security vulnerabilities that need to be fixed.
Issues found

Medium High1 1
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues

1



WATCHPUGGalloDaSballominhquanym
0x52Jeiwanhansfriese

berndartmueller

2

https://github.com/jack-the-pug
https://github.com/GalloDaSballo
https://github.com/minhquanym
https://github.com/0x00052
https://github.com/Jeiwan
https://github.com/hansfriese
https://github.com/berndartmueller


Issue H-1: Attacker can steal the accumulated topup feesin the topupproxy contract's balance
Source: https://github.com/sherlock-audit/2022-10-mover-judging/issues/112
Found byminhquanym, Jeiwan, 0x52, hansfriese, WATCHPUG, GalloDaSballo, berndartmueller
SummaryThe accumulated fees in the topupproxy contract's balance can be stolen by an at-tacker by using malicious _bridgeTxData and using 1inch's as targetAddress.
Vulnerability DetailThis attack vector is enabled by multiple traits of the topupproxy contract:
1. Shared whitelist Per to deploy script, the same trustedregistry will be sharedamong exchangeproxy and topupproxy.Therefore, the 2 whitelisted swap aggregator contracts will also be allowed to becalled on topupproxy:• 0x Proxy• 1inch ProxyAnd the 2 whitelisted bridge contracts can be called on exchangeproxy:• Synapse• Across
2. Unlimited allowance rather than only the amount of the current topup to thebridge's targetAddress At L414, the targetAddress will be granted an unlimited al-lowance rather than just the amount of the current transaction.https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L414
3. 1inch can be used to pull an arbitrary amount of funds from the caller and exe-cute arbitrary call The design of 1inch's AggregationRouterV4 can be used to pullfunds from the topupproxy and execute arbitrary external call:https://polygonscan.com/address/0x1111111254fb6c44bAC0beD2854e76F90643097d#code

3

https://github.com/sherlock-audit/2022-10-mover-judging/issues/112
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L414
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L414
https://polygonscan.com/address/0x1111111254fb6c44bAC0beD2854e76F90643097d#code
https://polygonscan.com/address/0x1111111254fb6c44bAC0beD2854e76F90643097d#code


See L2309-2321.
4. The topup fee will be left in the contract's balance https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352
Combining all the 3 above together, the attacker can call CardTopupPermit()->_proc
essTopup()->1inchswap() and drain all the funds in the contract:• _token: cardTopupToken• _bridgeType: 0• _bridgeTxData:– targetAddress: 1inch Proxy– callData:* amount: all the topupproxy's balance* srcReceiver: attacker's address
ImpactAll the accumulated fees can be stolen by the attacker.
Code Snippethttps://polygonscan.com/address/0x1111111254fb6c44bAC0beD2854e76F90643097d#codehttps://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/migrations/5_connect_contracts.js#L54-L61
Tool usedManual Review
Recommendation1. The accumulated fees should not be left in the contract;2. Only give the whitelisted targetAddress the allowance of the amount (_amount)transferred into the topupproxy contract within this transaction from the caller;

4

https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352
https://polygonscan.com/address/0x1111111254fb6c44bAC0beD2854e76F90643097d#code
https://polygonscan.com/address/0x1111111254fb6c44bAC0beD2854e76F90643097d#code
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L348-L352
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/migrations/5_connect_contracts.js#L54-L61
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/migrations/5_connect_contracts.js#L54-L61


3. The whitelist should not be shared.
DiscussionMcMannamanDuplicate of https://github.com/sherlock-audit/2022-10-mover-judging/issues/60 https://github.com/sherlock-audit/2022-10-mover-judging/issues/37 https://github.com/sherlock-audit/2022-10-mover-judging/issues/38 https://github.com/sherlock-audit/2022-10-mover-judging/issues/52although this is the best and most comprehensive of them all.I think that it's a low vulnerability (user funds are not affected by this and fees areharvested from time to time anyway in the normal flow of operation). But, regardless-- this issue has a valid point.hrishibhatHey @McMannaman, since #38 is also considered a duplicate, which is consideredmedium. Shouldn't the rest of the issues be medium too?amozgov@hrishibhat correct, as @McMannaman mentioned - this is not a "high" vulnerabilitysince no user funds are at risk, there is a tag "disagree with severity"Evert0xWe will not change the severity of this issue as protocol funds are at risk.McMannamanThe fixes are in https://github.com/viaMover/2022-10-mover/pull/1jacksanford1Bringing over some comments from https://github.com/viaMover/2022-10-mover/pull/1McMannaman Added reentrancy protection (also for issue #120) Plus an additionalcheck that only the USDC amount expected is deducted from contract when bridgingregardless of bytes call data. https://github.com/sherlock-audit/2022-10-mover-judging/issues/112WatchPug1. It's better to ensure that the whitelist is not shared between the two contracts.Otherwise, the attacker can still steal the topup fee from HardenedTopupProxyby using 1inch as targetAddress in their _bridgeTxData. Can you also make thechanges required to the deploy script to reflect that?

5

https://github.com/sherlock-audit/2022-10-mover-judging/issues/60
https://github.com/sherlock-audit/2022-10-mover-judging/issues/37
https://github.com/sherlock-audit/2022-10-mover-judging/issues/37
https://github.com/sherlock-audit/2022-10-mover-judging/issues/38
https://github.com/sherlock-audit/2022-10-mover-judging/issues/38
https://github.com/sherlock-audit/2022-10-mover-judging/issues/52
https://github.com/sherlock-audit/2022-10-mover-judging/issues/52
https://github.com/viaMover/2022-10-mover/pull/1
https://github.com/viaMover/2022-10-mover/pull/1
https://github.com/viaMover/2022-10-mover/pull/1
https://github.com/sherlock-audit/2022-10-mover-judging/issues/112
https://github.com/sherlock-audit/2022-10-mover-judging/issues/112


2. Seems like the attacker can still steal the exchange fee sitting on the exchange-ProxyContract.McMannaman1. I have updated the migrations to reflect that whitelists would be separated (and2 child contracts just to keep migrations-compatible).2. Could you please elaborate on how the attacker could steal exchange fee onthe exchangeProxyContract? The fees are (if theywould be non-zero) in USDC-only (the target token would be USDC), or, more generally in some single to-ken, fees could be claimed before token change, before, e.g. hypothetically, toUSDT. And if we know the target token, then lines https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/HardenedTopupProxy.sol#L443 and https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L198 should protect from draining fees:(non-swap scenario):1. an amount is stated as parameter when calling topup, then that amount is trans-ferred to the Topup proxy;2. no swap is called;3. bridged amount is checked to exactly match provided amount (regardless ofwhat is provided/called in the bridge data/call);(swap scenario):1. an amount is stated as parameter when calling topup, then that amount is trans-ferred to the Topup proxy;2. swap is called, the actual received amount in USDC is now the amount we'reworking with (regardless of what is provided/called in the bridge data/call) --deducting fees on both proxies;3. bridged amount is checked to exactly match amount stated by Exchange proxy(regardless of what is provided/called in the bridge data/call);so there are several assumptions we're working with:• fees are collected in single token type (otherwise they can be stolen, yes);• exchange proxy is callable only by Transfer proxy (a require https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L151);• if user uses some manipulation to escape (avoid paying own) fees (don't knowhow this is achievable though without reentrancy) -- this is violation of termsof use, even if possible, should be of little rationale to user;
6

https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/HardenedTopupProxy.sol#L443
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/HardenedTopupProxy.sol#L443
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/HardenedTopupProxy.sol#L443
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L198
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L198
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L198
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L151);
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L151);
https://github.com/viaMover/2022-10-mover/blob/fix-112-reentrancyamountcheck/cardtopup_contract/contracts/ExchangeProxy.sol#L151);


Please point if I'm missing something (no code examples needed, just a descriptionwould be enough).@jack-the-pugWatchPug• fees are collected in single token type (otherwise they can be stolen,yes);Yeah, I think this is the case where the accumulated fees on the exchangeProxyCont
ract can be stolen.I agree that this is not a major risk, though.

7



Issue M-1: exchangeFee can be escaped
Source: https://github.com/sherlock-audit/2022-10-mover-judging/issues/120
Found byWATCHPUG
SummaryComparing the before and after balance of the swap call for the swapped amountcan be exploited to escape the exchangeFee by wrapping the actual swap inside afake swap.
Vulnerability DetailThe attacker can reenter with another CardTopupPermit()->_processTopup()->IExch
angeProxyexecuteSwapDirect() at L174 to claw back the fee:1. Swap minAmount with 1inch, inside the 1inch swap at ExchangeProxy.solL174,reenter and HardenedTopupProxy.solCardTopupPermit();2. The inner swap is the actual amount: 1M;whichshouldpayforAs a result, the user successfully escaped most of the exchangeFee.
ImpactUser can escape the exchangeFee.
Code Snippethttps://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L336-L343https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/ExchangeProxy.sol#L160-L185
Tool usedManual Review
RecommendationConsider adding nonReentrant() modifier to all the 3 non-view methods in the Hard
enedTopupProxy:

8

https://github.com/sherlock-audit/2022-10-mover-judging/issues/120
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L336-L343
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/HardenedTopupProxy.sol#L336-L343
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/ExchangeProxy.sol#L160-L185
https://github.com/sherlock-audit/2022-10-mover/blob/main/cardtopup_contract/contracts/ExchangeProxy.sol#L160-L185


2.• CardTopupPermit();• CardTopupTrusted();• CardTopupMPTProof().
DiscussionMcMannamanThis is a valid point. Would be fixed by adding nonReentrant modifiers.jack-the-pugFix confirmedMcMannamanThe fixes are in https://github.com/viaMover/2022-10-mover/pull/2

9

https://github.com/viaMover/2022-10-mover/pull/2

